Email updates

Keep up to date with the latest news and content from Neural Development and BioMed Central.

Open Access Research article

Developmental control of lateralized neuron size in the nematode Caenorhabditis elegans

Andrew D Goldsmith1, Sumeet Sarin1, Shawn Lockery2 and Oliver Hobert1*

Author Affiliations

1 Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA

2 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA

For all author emails, please log on.

Neural Development 2010, 5:33  doi:10.1186/1749-8104-5-33

Published: 1 December 2010

Abstract

Background

Nervous systems are generally bilaterally symmetric on a gross structural and organizational level but are strongly lateralized (left/right asymmetric) on a functional level. It has been previously noted that in vertebrate nervous systems, symmetrically positioned, bilateral groups of neurons in functionally lateralized brain regions differ in the size of their soma. The genetic mechanisms that control these left/right asymmetric soma size differences are unknown. The nematode Caenorhabditis elegans offers the opportunity to study this question with single neuron resolution. A pair of chemosensory neurons (ASEL and ASER), which are bilaterally symmetric on several levels (projections, synaptic connectivity, gene expression patterns), are functionally lateralized in that they express distinct chemoreceptors and sense distinct chemosensory cues.

Results

We describe here that ASEL and ASER also differ substantially in size (soma volume, axonal and dendritic diameter), a feature that is predicted to change the voltage conduction properties of the two sensory neurons. This difference in size is not dependent on sensory input or neuronal activity but developmentally programmed by a pathway of gene regulatory factors that also control left/right asymmetric chemoreceptor expression of the two ASE neurons. This regulatory pathway funnels via the DIE-1 Zn finger transcription factor into the left/right asymmetric distribution of nucleoli that contain the rRNA regulator Fibrillarin/FIB-1, a RNA methyltransferase implicated in the non-hereditary immune disease scleroderma, which we find to be essential to establish the size differences between ASEL and ASER.

Conclusions

Taken together, our findings reveal a remarkable conservation of the linkage of functional lateralization with size differences across phylogeny and provide the first insights into the developmentally programmed regulatory mechanisms that control neuron size lateralities.